资源类型

期刊论文 340

年份

2024 1

2023 37

2022 37

2021 24

2020 25

2019 30

2018 13

2017 8

2016 18

2015 10

2014 17

2013 6

2012 4

2011 17

2010 25

2009 17

2008 18

2007 16

2006 4

2005 1

展开 ︾

关键词

混凝土 2

界面过渡区 2

/III-V界面 1

2D—3D配准 1

CO2利用 1

Cuk矩阵变换器 1

GaAs基微结构材料 1

PHEMT 1

TOC 1

TRIZ 1

V形坑 1

agent迁移协议 1

agent通信语言 1

不经意传输;后量子;格公钥;带差错学习;通用可复合 1

个人热管理 1

乳液 1

交通控制系统 1

产业化 1

人工噪声;多天线系统;保密中断概率;无线携能 1

展开 ︾

检索范围:

排序: 展示方式:

Study on the interfacial shear behavior of steel reinforced concrete (SRC) members with stud connectors

Zihua ZHANG,Junhua LI,Lei ZHANG,Kai YU

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 140-150 doi: 10.1007/s11709-014-0250-1

摘要: Statically push-out tests of 20 steel reinforced concrete short columns (SRCSC) with stud connectors on the surface of shape steel after fire and two SRCSC under ambient temperature were carried out, in order to study the failure mode, load-slip relationship and the interfacial shear transfer of SRC members after fire. Experimental results show that the typical failure modes and load-slip curves of SRCSC after fire are almost the same as the case under ambient temperature. The interfacial shear transfer of SRCSC declines exponentially not only with the increase of the peak temperature the specimen experienced but also with the increase of the peak temperature duration. The interfacial shear transfer of the specimens with studs arranged at the steel web is much higher than those with studs arranged at the steel flange. Empirical formulas of SRCSC interfacial shear transfer after fire are proposed, and the calculated results generally agree well with the experimental results.

关键词: steel reinforced concrete (SRC)     short column     stud connector     after fire     interfacial shear transfer    

Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry

ZHAO Chaofan, ZHU Chunying, MA Youguang

《化学科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 1-4 doi: 10.1007/s11705-008-0006-3

摘要: This paper aims at the interfacial phenomena of liquid-liquid mass transfer and its characteristic. By using the real-time holographic technique, the concentration distributions on the aqueous side were obtained according to holographic diagrams of mass transfer of ethanol through the interface of oil and water at different initial concentrations. Furthermore, the concentrations near the interface and the mass transfer coefficients were attained. A correlation of concentration near the interface to the concentration of the solute in the oil side was proposed. An approach of interfacial energy with solute concentration was established, and the calculated results are at good agreement with the experimental data. It is indicated that the liquid-liquid mass transfer process is approximately in accordance with two-film theory, the interfacial performance may be changed by the addition of the solute, and the interface of liquid-liquid is non-equilibrium thermodynamically during the mass transfer process.

关键词: liquid-liquid     different     real-time holographic     addition     transfer    

Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method

Shuyong CHEN, Xigang YUAN, Bo FU, Kuotsung YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 448-454 doi: 10.1007/s11705-011-1142-8

摘要: Interfacial Marangoni convection has significant effect on gas-liquid and/or liquid-liquid mass transfer processes. In this paper, an approach based on lattice Boltzmann method is established and two perturbation models, fixed perturbation model and self-renewable interface model, are proposed for the simulation of interfacial Marangoni convection in gas-liquid mass transfer process. The simulation results show that the concentration contours are well consistent with the typical roll cell convection patterns obtained experimentally in previous studies.

关键词: interfacial Marangoni convection     lattice Boltzmann method     gas-liquid mass transfer    

Interfacial heat transfer coefficient between metal and die during high pressure die casting process

GUO Zhipeng, XIONG Shoumei, CHO SangHyun, CHOI JeongKil

《机械工程前沿(英文)》 2007年 第2卷 第3期   页码 283-287 doi: 10.1007/s11465-007-0049-z

摘要: The present work focused on the determination of the interfacial heat transfer coefficient (IHTC) between metal and die during the high pressure die casting (HPDC) process. Experiments were carried out on an aluminum alloy, ADC12Z, using step shape casting so-called because of its shape. The IHTC was successfully determined by solving one of the inverse heat problems using the nonlinear estimation method first used by Beck. The calculation results indicated that the IHTC immediately increased after liquid metal was brought into the cavity by the plunger and decreased as the solidification process of the liquid metal proceeded. The liquid metal eventually solidified completely, a condition when the IHTC tended to be stable. Casting thickness played an important role in affecting the IHTC between the metal and die not only in terms of its value but also in terms of its change tendency. Also, under the test conditions, different change tendencies of the metal solid fraction were found between castings with different thicknesses and the die.

关键词: so-called     calculation     inverse     interfacial     aluminum    

Interfacial charge transfer and photocatalytic activity in a reverse designed BiO/TiO core-shell

《能源前沿(英文)》 2021年 第15卷 第3期   页码 732-743 doi: 10.1007/s11708-021-0772-x

摘要: In this study, the electronic and photocatalytic properties of core-shell heterojunctions photocatalysts with reversible configuration of TiO2 and Bi2O3 layers were studied. The core-shell nanostructure, obtained by efficient control of the sol-gel polymerization and impregnation method of variable precursors of semiconductors, makes it possible to study selectively the role of the interfacial charge transfer in each configuration. The morphological, optical, and chemical composition of the core-shell nanostructures were characterized by high-resolution transmission electron microscopy, UV-visible spectroscopy and X-ray photoelectron spectroscopy. The results show the formation of homogenous TiO2 anatase and Bi2O3 layers with a thickness of around 10 and 8 nm, respectively. The interfacial charge carrier dynamic was tracked using time resolved microwave conductivity and transition photocurrent density. The charge transfer, their density, and lifetime were found to rely on the layout layers in the core-shell nanostructure. In optimal core-shell design, Bi2O3 collects holes from TiO2, leaving electrons free to react and increase by 5 times the photocatalytic efficiency toward H2 generation. This study provides new insight into the importance of the design and elaboration of optimal heterojunction based on the photocatalyst system to improve the photocatalytic activity.

关键词: photocatalysis     core-shell     heterojunction     H2     TiO2     Bi2O3    

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 353-363 doi: 10.1007/s11709-018-0469-3

摘要: The effects of interfacial strength on fractured microcapsule are investigated numerically. The interaction between crack and microcapsule embedded in mortar matrix is modeled based on cohesive approach. The microcapsules are modelled with variation of core-shell thickness ratio and potential cracks are represented by pre-inserted cohesive elements along the element boundaries of the mortar matrix, microcapsules core, microcapsule shell, and at the interfaces between these phases. Special attention is given to the effects of cohesive fracture on the microcapsule interface, namely fracture strength, on the load carrying capacity and fracture probability of the microcapsule. The effect of fracture properties on microcapsule is found to be significant factor on the load carrying capacity and crack propagation characteristics. Regardless of core-shell thickness ratio of microcapsule, the load carrying capacity of self-healing material under tension increases as interfacial strength of microcapsule shell increases. In addition, given the fixed fracture strength of the interface of microcapsule shell, the higher the ratio core-shell thickness, the higher the probability of microcapsules being fractured.

关键词: interfacial strength     cohesive elements     microcapsule     core-shell thickness ratio     fracture properties    

Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1372-1388 doi: 10.1007/s11705-023-2302-3

摘要: Lignin is the largest natural aromatic biopolymer, but usually treated as industrial biomass waste. The development of lignin/polymer biocomposites can promote the high value utilization of lignin and the greening of polymers. However, the weak interfacial interaction between industrial lignin and polymer induces poor compatibility and serious agglomeration in polymer owing to the strong intermolecular force of lignin. As such, it is extremely difficult to prepare high performance lignin/polymer biocomposites. Recently, we proposed the strategy of in situ construction of interfacial dynamic bonds in lignin/polymer composites. By taking advantage of the abundant oxygen-containing polar groups of lignin, we inserted dynamic bonding connection such as hydrogen bonds and coordination bonds into the interphase between lignin and the polymer matrix to improve the interfacial interactions. Meanwhile, the natural amphiphilic structure characteristics of lignin were utilized to construct the hierarchical nanophase separation structure in lignin/polymer composites. The persistent problems of poor dispersity and interfacial compatibility of lignin in the polymer matrix were effectively solved. The lignin-modified polymer composites achieved simultaneously enhanced strength and toughness. This concise review systematically summarized the recent research progress of our group toward building high-performance lignin/polymer biocomposites through the design of interfacial dynamic bonds (hydrogen bonds, coordination bonds, and dynamic covalent bonds) between lignin and different polymer systems (polar plastics, rubber, polyurethane, hydrogels, and other polymers). Finally, the future development direction, main challenges, and potential solutions of lignin application in polymers were presented.

关键词: lignin     polymer     interfacial dynamic bonds    

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 143-157 doi: 10.1007/s11709-016-0377-3

摘要: Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

关键词: shear walls     wall diaphragms     finite element modelling     plastic shear connector     analytical modelling     experimental comparison    

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 331-356 doi: 10.1007/s11709-019-0596-5

摘要: This paper examines the structural response of reinforced concrete flat slabs, provided with fully-embedded shear-heads, through detailed three-dimensional nonlinear numerical simulations and parametric assessments using concrete damage plasticity models. Validations of the adopted nonlinear finite element procedures are carried out against experimental results from three test series. After gaining confidence in the ability of the numerical models to predict closely the full inelastic response and failure modes, numerical investigations are carried out in order to examine the influence of key material and geometric parameters. The results of these numerical assessments enable the identification of three modes of failure as a function of the interaction between the shear-head and surrounding concrete. Based on the findings, coupled with results from previous studies, analytical models are proposed for predicting the rotational response as well as the ultimate strength of such slab systems. Practical recommendations are also provided for the design of shear-heads in RC slabs, including the embedment length and section size. The analytical expressions proposed in this paper, based on a wide-ranging parametric assessment, are shown to offer a more reliable design approach in comparison with existing methods for all types of shear-heads, and are suitable for direct practical application.

关键词: non-linear numerical modelling     concrete damage plasticity     RC flat slabs     shear-heads     punching shear    

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

Interfacial induction and regulation for microscale crystallization process: a critical review

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 838-853 doi: 10.1007/s11705-021-2129-8

摘要: Microscale crystallization is at the frontier of chemical engineering, material science, and biochemical research and is affected by many factors. The precise regulation and control of microscale crystal processes is still a major challenge. In the heterogeneous induced nucleation process, the chemical and micro/nanostructural characteristics of the interface play a dominant role. Ideal crystal products can be obtained by modifying the interface characteristics, which has been proven to be a promising strategy. This review illustrates the application of interface properties, including chemical characteristics (hydrophobicity and functional groups) and the morphology of micro/nanostructures (rough structure and cavities, pore shape and pore size, surface porosity, channels), in various microscale crystallization controls and process intensification. Finally, possible future research and development directions are outlined to emphasize the importance of interfacial crystallization control and regulation for crystal engineering.

关键词: interfacial crystallization     heterogeneous nucleation     supersaturation     micro/nanostructure     process control and intensification    

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in

ZHANG Dong,ZHU Lizhong

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 305-315 doi: 10.1007/s11783-014-0647-z

摘要: Bioremediation of hydrophobic organic compounds (HOCs) contaminated soils involves several physicochemical and microbiological interfacial processes among the soil-water-microorganism interfaces. The participation of surfactants facilitates the mass transport of HOCs in both the physicochemical and microbiological interfaces by reducing the interfacial tension. The effects and underlying mechanisms of surfactants on the physicochemical desorption of soil-sorbed HOCs have been widely studied. This paper reviewed the progress made in understanding the effects of surfactant on microbiological interfacial transport of HOCs and the underlying mechanisms, which is vital for a better understanding and control of the mass transfer of HOCs in the biodegradation process. In summary, surfactants affect the microbiological interfacial behaviors of HOCs during three consecutive processes: the soil solution-microorganism sorption, the transmembrane process, and the intracellular metabolism. Surfactant could promote cell sorption of HOCs depending on the compatibility of surfactant hydrophile hydrophilic balance (HLB) with cell surface properties; while the dose ratio between surfactant and biologic mass (membrane lipids) determined the transmembrane processes. Although surfactants cannot easily directly affect the intracellular enzymatic metabolism of HOCs due to the steric hindrace, the presence of surfactants can indirectly enhanced the metabolism by increasing the substrate concentrations.

关键词: biodegradation     sorption     transmembrane transport     microbiological interfaces     surfactants    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

标题 作者 时间 类型 操作

Study on the interfacial shear behavior of steel reinforced concrete (SRC) members with stud connectors

Zihua ZHANG,Junhua LI,Lei ZHANG,Kai YU

期刊论文

Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry

ZHAO Chaofan, ZHU Chunying, MA Youguang

期刊论文

Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method

Shuyong CHEN, Xigang YUAN, Bo FU, Kuotsung YU

期刊论文

Interfacial heat transfer coefficient between metal and die during high pressure die casting process

GUO Zhipeng, XIONG Shoumei, CHO SangHyun, CHOI JeongKil

期刊论文

Interfacial charge transfer and photocatalytic activity in a reverse designed BiO/TiO core-shell

期刊论文

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

期刊论文

Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites

期刊论文

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

期刊论文

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

期刊论文

Behaviour of self-centring shear walls——A state of the art review

期刊论文

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文

Interfacial induction and regulation for microscale crystallization process: a critical review

期刊论文

Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in

ZHANG Dong,ZHU Lizhong

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文